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a b s t r a c t 

Neuroimaging-based brain-age estimation via machine learning has emerged as an important new approach for 

studying brain aging. The difference between one’s estimated brain age and chronological age, the brain age gap 

(BAG), has been proposed as an Alzheimer’s Disease (AD) biomarker. However, most past studies on the BAG 

have been cross-sectional. Quantifying longitudinal changes in an individual’s BAG temporal pattern would likely 

improve prediction of AD progression and clinical outcome based on neurophysiological changes. To fill this gap, 

our study conducted predictive modeling using a large neuroimaging dataset with up to 8 years of follow-up 

to examine the temporal patterns of the BAG’s trajectory and how it varies by subject-level characteristics (sex, 

APOE ɛ 4 carriership) and disease status. Specifically, we explored the pattern and rate of change in BAG over 

time in individuals who remain stable with normal cognition or mild cognitive impairment (MCI), as well as 

individuals who progress to clinical AD. Combining multimodal imaging data in a support vector regression 

model to estimate brain age yielded improved performance over single modality. Multilevel modeling results 

showed the BAG followed a linear increasing trajectory with a significantly faster rate in individuals with MCI 

who progressed to AD compared to cognitively normal or MCI individuals who did not progress. The dynamic 

changes in the BAG during AD progression were further moderated by sex and APOE ɛ 4 carriership. Our findings 

demonstrate the BAG as a potential biomarker for understanding individual specific temporal patterns related to 

AD progression. 
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. Introduction 

Alzheimer’s Disease (AD) is the 6th leading cause of death in the

.S., affecting 1 in 9, or 6.2 million Americans over the age of 65 as

f 2021 ( Alzheimer’s Association, 2021 ). Crucially, AD-related brain

hanges precede clinical symptoms, making treatment difficult to imple-

ent ( Jack et al., 2013 ; Singh-Manoux et al., 2012 ; Wilson et al., 2011 ).

hus, exploring the trajectory of AD-related brain changes may lead to

mproved treatment through early detection and future outcome pre-

iction. While aging in cognitively normal (CN) individuals ultimately
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eads to some structural brain atrophy ( Anderton, 1997 ), neurodegen-

rative diseases such as AD show rapid deviation from the normal aging

rajectory ( Anderson et al., 2012 ). To understand the temporal pattern

f these AD-related deviations from normal aging, predictive models us-

ng large longitudinal neuroimaging datasets can be leveraged. 

To accomplish this, machine-learning methods using neuroimaging

eatures as input have been used to estimate a person’s chronological

ge ( Baecker et al., 2021 ; Cole and Franke, 2017 ; Franke et al., 2010 ;

iu et al., 2020 ; Wang et al., 2019 ). This estimated age is also called

rain age and allows the difference of this estimated brain age to the
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articipant’s chronological age to be compared. This difference, referred

o as the brain age gap (BAG), has been used to examine brain ag-

ng in major depressive disorder ( Han et al., 2020 ), Parkinson’s disease

 Eickhoff et al., 2021 ), schizophrenia ( Chung et al., 2018 ), as well as

on-disease related differences in cognitive maintenance ( Anatürk et al.,

021 ) and lifestyle behaviors ( Bittner et al., 2021 ). In AD, a positive BAG

alue (where the estimated brain age is greater than the chronological

ge) has been associated with increased risk of dementia onset using

nimodal ( Franke et al., 2010 ; Gaser et al., 2013 ; Wang et al., 2019 )

nd multimodal neuroimaging measures ( Liem et al., 2017 ), suggesting

ts potential as a personalized AD biomarker. Furthermore, individuals

t an intermediate stage of AD-related brain changes, known as mild

ognitive impairment (MCI), exhibit spatially distinct patterns of gray

atter loss consistent with AD related neuropathology ( Driscoll et al.,

009 ). Studies showing significantly greater BAG at later stages of AD

nd association with clinical symptom severity reflect this ( Franke and

aser, 2012 ; Löwe et al., 2016 ), suggesting the BAG may follow a nonlin-

ar trajectory. While pinpointing the exact biological differences quanti-

ed by the BAG remains a challenge, its association with brain diseases

arrants further investigation. 

However, literature relating the BAG to AD progression is sparse.

ost studies used cross-sectional designs ( Liem et al., 2017 ), which are

nadequate in describing trajectories and do not simultaneously con-

ider intra- (i.e., within subject neurophysiological changes) or inter-

i.e., between subject variance) individual differences ( Thompson et al.,

011 ; Ziegler et al., 2012 ). The misleading notion of describing greater

AG values in cross-sectional studies as an acceleration of brain aging

as recently recognized by Vidal-Pineiro et al. (2021) , though they

id not explore the BAG in the context of AD. There have been re-

arkably few studies investigating the BAG with a longitudinal design

 Bjørnebekk et al., 2021 ; Egorova et al., 2019 ; McWhinney et al., 2021 ;

rigglesworth et al., 2022 ), and fewer still related AD. Two notable

AG studies using longitudinal data to explore AD compared study time-

oints only to baseline assessment ( Franke and Gaser, 2012 ; Löwe et al.,

016 ), but this approach does not fully investigate potential non-linear

rajectories of the BAG. For example, these studies found BAG scores

ompared between baseline and a follow up time in several years were

ignificantly greater in progressive MCI and AD individuals compared

o earlier or stable groups, though whether this remains significant after

onsidering variation across multiple timepoints is unclear. Identifying

ow an individual’s BAG temporal pattern changes over time (i.e., lin-

ar or non-linear) would enable improved prediction of clinical outcome

ased on neurophysiological changes. 

Together, this data requires consideration of the covariance structure

mong repeated measures across individuals and groups to account for

he heterogeneity common in longitudinal datasets and in particular, AD

atient data ( Noh et al., 2014 ; Sun et al., 2019 ). The appropriate analyti-

al design would then suggest either a linear or non-linear fit to the data.

xtant literature on brain and cognitive aging have shown both linear

nd non-linear changes across age groups, brain structures, and cogni-

ive abilities ( Raz et al., 2005 ; Raz and Lindenberger, 2011 ). One other

tudy of note examined longitudinal patterns of brain atrophy between

N and MCI subjects using magnetic resonance imaging (MRI) data and

ound accelerating brain aging for older CN and MCI individuals, though

he results were based on a small sample size and did not distinguish be-

ween those with stable or progressive diagnoses, and in addition did not

xplore the moderating effects of covariates ( Davatzikos et al., 2009 ). 

Choice of neuroimaging modality has also been relatively homoge-

ous in the BAG literature. Typically, structural T1-weighted MRI has

een used to estimate BAG. While MRI derived cortical thickness in-

orm structural brain changes and have been used in AD prediction

 Dickerson and Wolk, 2012 ), fluorodeoxyglucose positron emission to-

ography (FDG-PET) provides complementary functional information

hrough an indirect measure of metabolic function via glucose consump-

ion ( Benvenutto et al., 2018 ; Dukart et al., 2011 ). Studies using this

odality have shown neuronal dysfunction can precede gray matter at-
2 
ophy ( Jack et al., 2010 ; Landau et al., 2011 ), and has been used to

easure neurodegeneration ( Jack et al., 2018 ). However, FDG-PET’s

se in BAG prediction and understanding its temporal pattern has not

een extensively studied ( Beheshti et al., 2019 ), despite its utility in

redicting AD ( Frisoni et al., 2017 ). Importantly, it has been suggested

o show more consistent functional changes at earlier AD stages com-

ared to the structural-related MRI modality ( Dukart et al., 2011 ), mak-

ng FDG-PET an ideal method for tracking biological changes preced-

ng clinical symptoms of AD. This presents an opportunity to utilize

oth modalities for understanding the BAG trajectory. A recent arti-

le by Lee et al. (2022) compared brain age prediction models when

sing either FDG-PET- or MRI-alone, finding the FDG-PET-only model

ad better performance than the latter. Literature on combining these

odalities for predicting brain age is considerably scarcer. Extant liter-

ture unrelated to brain age prediction has shown the combination of

RI and FDG-PET data improves discrimination prediction performance

f AD ( Lu et al., 2018 ) and MCI ( Xu et al., 2016 ). Given multimodal

atasets improve brain age prediction performance ( Liem et al., 2017 ;

iu et al., 2020 ), the use of both FDG-PET and MRI images is warranted.

In the current study, we explored the use of structural MRI and FDG-

ET for a brain age prediction model and tested the hypothesis that the

AG’s temporal pattern would be non-linear, increasing at a faster rate

n individuals who were initially diagnosed as MCI but progressed to

D, vs. those who remained diagnosed as CN or MCI. To study the tem-

oral pattern, we utilized longitudinal data from the Alzheimer’s Dis-

ase Neuroimaging Initiative (ADNI) ( http://adni.loni.usc.edu/ ) from

ndividuals with up to 8 years of follow-up. Further, as BAG has been

hown to be moderated by factors such as sex ( Franke and Gaser, 2019 ;

rigglesworth et al., 2022 ) and carriership of the apolipoprotein E ɛ 4

APOE ɛ 4) allele ( Löwe et al., 2016 ), we also examined their influence

n the BAG temporal patterns. Importantly, this study uses a longitu-

inal design to investigate the pattern (linear vs. non-linear) and rate

f change in BAG over time in individuals who progress from MCI to

linical AD. With further validation, BAG as a biomarker for AD has

linical application in assessing brain health and providing insight into

 patient’s brain age trajectory ( Baecker et al., 2021 ). 

. Methods 

.1. Participants 

Data were downloaded from the Alzheimer’s Disease Neuroimaging

nitiative (ADNI) database that included ADNI1, ADNI-GO, ADNI2, and

DNI3 (adni.loni.usc.edu/ ). The primary goal of ADNI has been to test

hether neuroimaging, clinical, neuropsychological, or other biological

arkers can be combined to measure the progression of MCI and early

D. 

ADNI participants were stratified into three groups: stable CN (sCN),

table MCI (sMCI), or progressive MCI (pMCI). Stable individuals main-

ained the same diagnosis, either CN or MCI, for the duration of ADNI.

rogressive individuals changed from a baseline assessment of MCI diag-

osis to an assessment diagnosis of AD for the duration of ADNI without

everting to MCI. The full sCN sample consisted of N = 227 who had

t least baseline data. This full sCN sample was further divided into a

raining ( n = 170) and test ( n = 57) set as described in the ‘ Brain Age

stimation’ section. To prevent leakage between model training and fu-

ure statistical comparisons, only the sCN test sample was used in the

ater longitudinal analyses. 

To enable longitudinal analyses, each group was further filtered since

he total number of assessment time points varied across subjects. Par-

icipants were only included if they had two or more assessments (in-

luding baseline) and had both MRI and PET scans. With these filters,

he final study sample for longitudinal analyses included 45 sCN, 217

MCI, and 108 pMCI individuals. Participant sex, age, years of educa-

ion, race, mini-mental state exam (MMSE) score, and APOE ɛ 4 allele

arriership were provided from the ADNI dataset. 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Demographic and clinical measurements were documented and

vailable for each assessment point for all individuals. APOE ɛ 4 carrier-

hip was determined at the initial enrollment of that individual. Baseline

ata from participants in the three groups were compared in reported

ex, age, years of education, race, MMSE score, and APOE ɛ 4 carrier-

hip. One-way ANOVA between groups was carried out for variables age

nd education, while MMSE scores were compared using a permutation-

ased ANOVA. Categorical data of sex and APOE ɛ 4 were compared us-

ng Chi-Square tests. The variable race was analyzed using Fisher’s Exact

est. 

.2. Imaging data 

Structural MRI and FDG-PET imaging measures used for brain age

stimation were provided by Popuri et al. (2018). In that study, struc-

ural MRI data were processed through FreeSurfer v5.3 ( Fischl, 2012 ),

enerating 85 cortical and subcortical gray matter regions of interest

ROI) (Table S4). In the present study, structural MRI mean cortical

hickness values were used in subsequent analysis for brain age es-

imation. Popuri et al. (2018) also parcellated each cortical ROI into

qual-size patches, using a previously described adaptive surface patch

eneration method where vertices within individual ROIs were k-means

lustered to reduce dimensionality in an anatomically meaningful way

 Raamana et al., 2015 ). With this method, each ROI could be subdivided

nto potentially multiple patches depending on the patch size parameter

 m ) used, where a smaller m would result in a fine resolution (e.g., larger

OIs being parcellated into multiple patches with the same label), and

 larger m would result in a coarser resolution. The goal of this method

as to create a uniform patch density (i.e., patches in ROI / voxels in

OI) of the cortical surface. 16 patch-size levels were used to obtain

his fine to coarse signal representation: 100 voxels per patch, 150, 200,

50, 300, 350, 400, 450, 500, 1000, 1500, 2000, 3000, 4000, 5000,

nd 10,000. FDG-PET images were co-registered with structural MRI,

nd patch-wise standardized uptake value ratios (SUVRs) of FDG-PET

ere provided for ROIs at each patch-size level. To reduce computation

ime, we evaluated 5 of these 16 patch-size levels (500, 1000, 2000,

000, and 10,000) in the training step of the brain age estimation anal-

sis (explained in the following section below) and selected the patch

ize of 2000 voxels/patch based on it returning the lowest root mean

quared error (Table S1). This 2000 voxels/patch size resulted in 66

nd 65 left and right hemisphere MRI features, respectively, and 343

DG-PET whole brain features (cortical and sub-cortical). Subsequent

rain age estimation analyses were based on SUVRs at this patch size. 

.3. Brain age estimation 

Data preparation and analysis were carried out using R (v3.6.2, R

ore Team, 2019). Brain age estimation was accomplished using a sup-

ort vector regression (SVR) model ( e1071 package (v1.7–3) within R )

 Smola and Schölkopf, 2004 ), given that the dependent variable of age

as continuous, and that this method has been frequently used in brain

ge prediction literature ( Dosenbach et al., 2010 ; Erus et al., 2015 ;

ranke et al., 2010 ; Liem et al., 2017 ; Niu et al., 2020 ). Briefly, SVR

ransforms a training set of data into high-dimensional feature space

nd attempts to fit the data by not penalizing error less than a thresh-

ld while minimizing model complexity through its hyperparameters.

o observe deviations from healthy brains, the SVR was trained using

aseline sCN data, then applied to data at all other time points in each

nalysis group (i.e., sCN test set, sMCI, pMCI). 

SVR model selection procedures are visualized in Fig. 1 . The full

CN sample was randomly split (without replacement) into a train-

ng set (75% of the data) and test set (remaining 25%). The training

et ( n = 170) had an age range of 59.8 – 85.9 years (mean = 73.86,

d = 5.59, median = 73.4), and the test set ( n = 57) had an age range

f 62.8 – 86.2 years (mean = 72.92, sd = 6.14, median = 72.6). All

ubjects had neuroimaging data at 5 patch-size levels (500, 1000, 2000,
3 
000, 10,000 voxels/patch). In short, a different SVR trained with base-

ine neuroimaging data at each patch size was used to predict age, and

he resulting prediction performances were compared to select the best

odel and patch size. 

Using either a linear or polynomial (to identify non-linear relation-

hips) kernel, hyperparameters (i.e., cost parameter for both kernels,

nd gamma, degree, and constant term for polynomial kernel) of each

VR were optimized using 10-fold cross-validation. Briefly, this com-

only used procedure splits the training data into 10 partitions, where

 partitions are used to fit the model, and the remaining partition is

sed as a validation set to estimate the sample error. This is repeated 10

imes such that each partition is used as a validation set once and the

ample error is averaged across validation sets. Crucially, only data from

he validation sample is used to estimate error during this procedure.

ollowing 10-fold cross-validation, each SVR then predicted age on the

est set, which contained participants unseen during model training to

roduce a valid estimate of prediction performance. Thus, the best per-

orming model was chosen as the one with the lowest root mean squared

rror (RMSE). This model and the neuroimaging data from the asso-

iated patch size were then used for all future analyses. Additionally,

erformance metrics mean absolute error (MAE), Pearson correlation

oefficient ( r ), and coefficient of determination (R 

2 ) were computed. 

Finally, each metric was compared between models using both MRI

nd FDG-PET data (i.e., multimodal) and only MRI or only FDG-PET

i.e., unimodal) from the prespecified patch size. To assess the differ-

nces in data modality for brain age prediction, 95% confidence inter-

als were generated by bootstrapping (10,000 repetitions) on the 10-fold

ross-validation of the multimodal and unimodal models. The modality

ith the best performance on average (i.e., highest MAE and RMSE, and

owest r and R 

2 ) was chosen, and the estimation of brain age by this best

erforming model is subsequently referred to as estimated brain age. 

This best performing model was then applied to all individuals in

ach analysis group (i.e., sCN test set, sMCI, and pMCI) to obtain indi-

idualized estimated brain ages at each available assessment time point

not just baseline). The BAG was calculated as the difference between

he individual’s estimated brain age and actual chronological age, where

 positive BAG represents greater than expected brain aging. Similar pro-

edures of SVR model training and testing were also conducted using

ingle modality MRI or FDG-PET data. 

Finally, a well-documented observation in brain age prediction is the

ias towards overestimating the BAG for younger subjects and underes-

imating it for older subjects, likely due to regression towards the mean

 Le et al., 2018 ; Liang et al., 2019 ; Smith et al., 2019 ). To overcome

his bias, BAGs should be further corrected for the confounding effects

f chronological age. We evaluated a linear regression model on the full

CN baseline data (see Liang et al., 2019 for further description of this

rocedure) to remove this known bias. Given the BAG is estimated us-

ng cognitively healthy data at baseline, the expected age-regression in

CN should be centered around 0. Fig. 2 (bottom left graph) shows this

rocedure was effective in greatly reducing the bias when visualizing

he entire sCN sample. When examining the sCN test set sample used

or longitudinal analyses ( n = 45), this trend is more difficult to observe

ith the smaller sample size. However, one-sample t -test suggests the

CN test set sample’s bias corrected BAG scores were not significantly

ifferent from zero ( t = 1.321, p = .193), after assuming a normal dis-

ribution using the Shapiro-Wilk test ( W = 0.968, p = .247). Notably,

he bias is not eliminated in the sMCI and pMCI panels, suggesting es-

ecially for pMCI that the unbiased BAG is positive. It is important to

ote that correction for age-bias was done only for values in subsequent

nalysis of BAG trajectory, and not done during SVR training to avoid

rtificially boosting the model’s performance ( Butler et al., 2021 ). 

.4. Feature visualization 

To aid interpretability between modalities, MRI and FDG-PET fea-

ures were quantitatively labeled depending on their importance for
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Fig. 1. Model selection pipeline. 227 stable cognitively normal (sCN) participants were split into a training set (75% of the sample) and test set (25%), where each 

participant had baseline neuroimaging data at 5 different patch sizes (500, 1000, 2000, 5000, 10,000 voxels/patch). A separate support vector regression (SVR) was 

trained and tested with each patch size to predict age. Hyperparameters of each SVR were optimized using 10-fold cross-validation with either linear or polynomial 

kernel. Patch size and modality comparisons were assessed against the same test set. Training data from the patch size that resulted in the lowest root mean squared 

error (RMSE) was then used to compare multimodal and unimodal models. The model with the best brain age estimation performance against the test set, or the 

lowest mean absolute error (MAE), RMSE, and highest correlation coefficient (r) and coefficient of determination (R 2 ), is shown. This best performing model and 

associated neuroimaging data were then used for all future analyses. 

Fig. 2. Comparison of best fit line for data before (dashed line) and after (complete line) bias correction is applied for each group. Groups are given as stable 

cognitively normal (sCN), stable mild cognitive impairment (sMCI), and progressive mild cognitive impairment (pMCI). To show the effect of bias correction, the full 

sCN sample ( N = 227) is plotted here. For all plots, shaded area around each line indicates the 95% confidence interval. Individual points represent baseline data 

prior to bias correction. Dotted identity y = x and horizontal lines are given as reference. Top: Baseline estimated brain age as a function of chronological age for all 

individuals in each group. Bottom: Baseline brain age gap (BAG) as a function of chronological age for all individuals in each group. 
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VR prediction performance. For instance, if the removal of a feature

esults in model performance of greater MAE value compared to the

AE of a model when using all features, that removed feature would be

onsidered “important ” for predicting brain age in that dataset. Thus,

he importance of each feature was gauged by removing one feature

t a time and calculating the resulting model’s MAE. An importance

core for each feature was calculated as the ratio of MAE after remov-

ng a feature, over the original MAE, where a higher positive ratio indi-

ated greater importance for normal brain age prediction. Features were
4 
hen min/max scaled, and any features that were divided into multiple

atches (during preprocessing) were averaged together to create single

verall importance values for each ROI. Top features were identified as

eing at least 1 standard deviation from the mean (Table S5). Cortical

urface features were visualized using SurfStat (Fig. S1) ( Worsley et al.,

009 ). Of note, this method of feature importance assessment is done us-

ng only sCN data during the model training/testing phase, and thus are

nterpreted in the context of normal brain aging and not disease-related

ging. 
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Table 1 

Demographic information for each group. Stable cognitively normal (sCN) and stable mild cognitive impairment (sMCI) maintain the same diagnosis across 

assessments, while the group with progressive mild cognitive impairment (pMCI) progresses from MCI to at least a final diagnosis of Alzheimer’s Disease. 

Bold p-values are < 0.05. 

sCN ( n = 45) sMCI ( n = 217) pMCI ( n = 108) P-value 

Female (%) 15 (33.3%) 86 (39.6%) 42 (38.9%) 0.731 

Mean Age (SD) 73.9 ( ± 6.22) 73 ( ± 7.55) 73.5 ( ± 7.14) 0.711 

Mean MMSE (SD) 29.0 ( ± 1.12) 27.9 ( ± 1.75) 27 ( ± 1.66) < 0.001 

APOE ɛ 4 carriers (%) 10(22.2%) 83 (38.2%) 71 (65.7%) < 0.001 

Mean years of education (SD) 16.8 ( ± 2.44) 15.9 ( ± 2.83) 16.2 ( ± 2.61) 0.131 

% White 91.1% 91.7% 96.3% 0.493 

2

 

u  

M  

i  

t  

(  

i  

T  

t  

h  

o  

t  

e  

i  

s  

d  

t  

f  

w  

t  

n

2

 

u  

a  

i  

n  

f  

o  

f  

i  

c  

w  

i  

t

 

a  

e  

s  

s  

s  

c  

s  

t  

a  

s  

b  

s  

s

3

3

 

b  

n  

A  

i  

a  

d

3

 

f  

e  

E  

a  

R  

P  

R  

i  

f  

m  

a  

n  

v

3

 

t  

y  

g  

s  

t  

a  

e  

t

 

B  

t  

e  

t  

p  

t  

q  

t

 

t  

b  

g  
.5. Longitudinal analysis of BAG trajectory 

Comparisons in BAG trajectory among groups were performed

sing multilevel modeling with the lme4 package (v.1.1–21) in R .

ultilevel modeling allows simultaneous quantification of inter- and

ntra-individual level patterns in the data, while taking advantage of

he regression framework to examine effects of different covariates

 Raudenbush and Bryk, 2002 ). All models assessed the random effects of

ndividuals by allowing their slopes and intercepts to vary across time.

he time variable was defined as the assessment time point, coded as

he number of months following baseline. Restricted maximum likeli-

ood was used to estimate model parameters and to test the significance

f random effects. The basic formation of multilevel models examined

ime as linear. Higher-order quadratic time or orthogonal polynomial

ffects were also examined separately, and subsequent model compar-

sons were conducted based on likelihood ratio testing and the model

election criterion Akaike Information Criterion (AIC). Following this

etermination, fixed effects of group type and its interaction term with

ime (either between sCN and pMCI, or sMCI and pMCI, where the pMCI

actor was always compared against the sCN or sMCI reference factors)

ere added to the model. Additional covariates of sex and APOE ɛ 4 were

ested separately as a fixed effect in the model to determine if they sig-

ificantly moderated the effect of group type on the BAG trajectory. 

.6. Analysis of pMCI BAG trajectory 

To investigate whether the BAG trajectory pattern for pMCI individ-

als followed a non-linear pattern, piecewise linear segments centered

round the assessment of AD diagnosis were used. The segment contain-

ng assessments from baseline until the assessment before the AD diag-

osis was labeled preAD, and the segment containing assessment times

or and following AD diagnosis was labeled postAD. To examine the rate

f BAG change, only pMCI individuals with at least two assessments be-

ore and two assessments after the initial AD diagnosis assessment were

ncluded ( N = 24). Multilevel modeling was used estimate the rate of

hange in BAG for each segment, where segments preAD and postAD

ere used as separate fixed effects, and the random effect structure var-

ed the slope and intercept of all pMCI subjects across preAD and postAD

ime segments. 

However, the above analysis only allowed us to estimate the preAD

nd postAD slopes separately and compare the slopes numerically. To

stablish whether the difference in BAG slopes for the preAD and postAD

egments (i.e., interaction between preAD and postAD) was statistically

ignificant, an additional variable centered on the AD diagnosis (1 = as-

essment with AD diagnosis, 0 = assessment with MCI diagnosis) was

reated to indicate the individual’s AD conversion status. This conver-

ion variable was added as a fixed effect to the multilevel model to in-

eract with the time effect. A significant positive estimate of this inter-

ction would indicate whether the difference in BAG slope between the

egment following the initial AD diagnosis (i.e., postAD) and segment

efore the diagnosis (i.e., preAD) was actually greater. If the postAD

egment was significantly greater than the preAD segment, this would

uggest brain aging accelerates after diagnosis in this sample. 
5 
. Results 

.1. Participants 

Age, sex, years of education, and race were not significantly different

etween the three groups (all p > .05), suggesting these variables would

ot confound later analyses. Differences in group MMSE ( p < .001) and

POE ɛ 4 ( p < .001) were significant, though this was expected as CN

ndividuals categorized as such due to lack of cognitive impairment and

re less likely to be APOE ɛ 4 carriers compared to AD individuals. Full

emographic characteristics can be found in Table 1 . 

.2. SVR performance 

The SVR model was trained using baseline MRI and FDG-PET data

rom sCN individuals. The model with the best performance (e.g., low-

st RMSE) was achieved using a linear kernel compared to polynomial.

stimation performance of the multimodal model on the test set found

n overall performance of r = 0.64, R 

2 = 0.41, MAE = 3.71 years, and

MSE = 4.79 years. Compared to unimodal models (e.g., MRI only, FDG-

ET only), the multimodal model yielded on average lower MAE and

MSE, and higher r and R 

2 ( Fig. 3 ). Almost all bootstrapped confidence

ntervals overlapped, indicating the differences were numerically dif-

erent but not statistically significant. The exception was for the MAE

etric, where the intervals did not overlap between the multimodal

nd MRI only model, suggesting the multimodal model achieved sig-

ificantly lower MAE compared to the MRI only model. Performance

alues are also given in Table 2 . 

.3. Group BAG trajectory comparisons 

Brain age prediction and bias correction models were then applied

o all available assessment time points for each subject within each anal-

sis group. Mean BAG for the pMCI group was greater than the stable

roups at every level of assessment ( Fig. 4 ), while a visual assessment

hows sMCI and sCN maintained relatively stable BAG trajectories. No-

ably, the estimated variance in Fig. 4 is minimal up until the final two

ssessment points, m84 and m96, where each group contained only sev-

ral observations. Removal of these final assessment points did not dras-

ically change the significance or slopes of the following results. 

Multilevel modeling was used to assess the temporal trajectory of

AG over time (linear vs. nonlinear) across all individuals regardless of

heir group type. Given the large amount of variance among subjects in

ach group, a random effects structure varying subjects over assessment

ime was necessary to improve model fit ( X 

2 (2) = 160.96, p < .001). The

attern of change in BAG for all individuals was found to be linear over

ime ( b = 0.123, p < .001). Inclusion of the fixed and random effects of

uadratic or orthogonal assessment time did not significantly improve

he model fit. 

In addition, we examined whether the rate of change in BAG over

ime was different for each group by including the 2-way interaction

etween assessment and group type. Comparing pMCI against the stable

roups found the BAG of the pMCI group increased at a faster rate than
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Fig. 3. Comparison of model performances across modalities of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG- 

PET), including mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient (r) and coefficient of determination (R 2 ). Error bars represent 

the adjusted bootstrap percentile 95% confidence intervals, computed over 10,000 bootstrap repetitions. 

Table 2 

Model performances across modalities of magnetic resonance imaging (MRI) and 

fluorodeoxyglucose positron emission tomography (FDG-PET), including mean 

absolute error (MAE), root mean squared error (RMSE), correlation coefficient 

(r) and coefficient of determination (R 2 ). Adjusted bootstrap percentile 95% 

confidence intervals, indicated in square brackets, were computed over 10,000 

bootstrap repetitions. 

Metric MRI & FDG-PET MRI only FDG-PET only 

MAE 3.710 [3.24 3.86] 4.500 [4.05 4.84] 3.784 [3.44 3.89] 

RMSE 4.790 [4.30 4.93] 5.294 [4.81 5.51] 5.008 [4.69 5.14] 

r 0.640 [0.61 0.71] 0.542 [0.51 0.62] 0.590 [0.55 0.67] 

R 2 0.410 [0.37 0.51] 0.294 [0.26 0.38] 0.348 [0.31 0.45] 
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n

he sCN group ( b = 0.372, p < .001), and sMCI group ( b = 0.310, p <

001). Results for all models are reported in Table 3 for sCN, and Table 4

or sMCI. 

Given the significant interaction of group type and assessment on

he BAG, additional subject-level covariates were included in the mul-

ilevel models to test whether the difference in rate of BAG change

ver assessment across groups (i.e., the 2-way interaction effect) de-

ended on subject-specific characteristics. These models examined the

nfluence of sex (male or female) using the 3-way interaction of as-

essment, group type, and sex. Comparing pMCI to sCN found the dif-

erence in BAG rate of change was stronger for females compared to

ales ( b = 0.397, p = .029), and similarly for pMCI compared to sMCI

 b = 0.351, p = .003). Visualizing the trajectory of each group over as-
6 
essments shows a slight increasing BAG trajectory for pMCI females

ompared to males across groups ( Fig. 5 ). 

APOE ɛ 4 carriership was examined similarly (i.e., comparing carriers

o non-carriers). The respective 3-way interaction was significant when

omparing pMCI to sCN ( b = 0.435, p = .034), but not when comparing

MCI to sMCI ( b = 0.184, p = .128) ( Fig. 6 ). 

.4. Trajectory analysis of pMCI 

The increasing change in BAG for the pMCI group was further ex-

mined using piecewise linear segments to assess whether the rate of

ncrease in BAG was greater following the diagnosis of AD. Piecewise

inear segments of preAD and postAD as fixed effects were best mod-

led when varying individuals over the preAD and postAD assessments

n the random effects, compared to using only preAD ( X 

2 (3) = 19.544,

 < .001) or only postAD ( X 

2 (3) = 11.399, p = .010). Using this random

ffect structure, the rate of increase in BAG was numerically greater for

he postAD segment ( b = 0.425, p < .001) compared to the preAD seg-

ent ( b = 0.327, p = .031). 

To examine whether the difference in rates of BAG change were sta-

istically significant before and after AD diagnosis, multilevel modeling

f the 2-way interaction of assessment and conversion variable (i.e., a

inary variable indicating whether assessments were before and after

D) was conducted. This interaction was non-significant ( b = 0.170,

 = .415), suggesting that while the preceding analysis identified a

reater slope for the postAD segment, the rate of increase in BAG did

ot differ significantly before and after conversion. 
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Fig. 4. Individual and group brain age gap (BAG) values at each assessment month following baseline. Thick lines represent BAG of all subjects for each group 

across assessments, fitted by loess curve. Shaded area along each curve indicates the 95% confidence interval. Individual dots and lines represent individual subjects 

for each group. Groups are given as stable cognitively normal (sCN), stable mild cognitive impairment (sMCI), and progressive mild cognitive impairment (pMCI). 

Assessment time represents the months following the baseline (initial) assessment. 

Table 3 

Multilevel modeling results for group type stable cognitively normal (sCN) compared to progressive mild 

cognitive impairment (pMCI). Bold p-values are < 0.05. 

Estimate Std. Error CI (95%) Statistic P-value 

Assessment, Group type 

Intercept 0.740 0.556 [ − 0.351, 1.831] 1.331 0.184 

Assessment − 0.034 0.082 [ − 0.195, 0.126] − 0.422 0.673 

pMCI group 3.918 0.659 [2.625. 5.212] 5.950 < 0.001 

Assessment ∗ pMCI group 0.372 0.095 [0.186, 0.558] 3.930 < 0.001 

Assessment, Group type, Sex 

Intercept 0.815 0.969 [ − 1.088, 2.719] 0.841 0.401 

Assessment time − 0.037 0.125 [ − 0.282, 0.208] − 0.299 0.765 

pMCI group 4.053 1.126 [1.842, 6.265] 3.599 < 0.001 

Males − 0.108 1.190 [ − 2.445, 2.229] − 0.091 0.928 

Assessment ∗ pMCI group 0.607 0.143 [0.327, 0.888] 4.254 < 0.001 

Assessment ∗ Males − 0.000 0.158 [ − 0.310, 0.310] − 0.001 1.000 

pMCI diagnosis ∗ Males − 0.212 1.398 [ − 2.957, 2.533] − 0.152 0.879 

Assessment ∗ pMCI group ∗ Males − 0.397 0.182 [ − 0.754, − 0.040] − 2.186 0.029 

Assessment, Group type, APOE ɛ 4 

Intercept 0.585 0.576 [ − 0.546, 1.716] 1.015 0.310 

Assessment − 0.010 0.093 [ − 0.193, 0.173] − 0.109 0.913 

pMCI group 3.612 0.717 [2.203, 5.020] 5.036 < 0.001 

APOE ɛ 4 carrier 0.672 0.651 [ − 0.607, 1.950] 1.032 0.303 

Assessment ∗ pMCI group 0.136 0.119 [ − 0.098, 0.371] 1.142 0.254 

Assessment ∗ APOE ɛ 4 carrier − 0.092 0.182 [ − 0.449, 0.264] − 0.509 0.611 

Assessment ∗ pMCI group ∗ APOE ɛ 4 carrier 0.435 0.205 [0.033, 0.837] 2.123 0.034 
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.5. Feature importance 

Top neuroimaging features at least one standard deviation above the

verage feature importance value were considered to contribute pos-

tively to the prediction of the BAG (Table S5). Top MRI features of

ortical thickness were the left inferior parietal cortex, inferior tem-

oral gyrus, lingual gyrus, pars triangularis, precuneus cortex, rostral
7 
iddle frontal gyrus, superior temporal gyrus, and right entorhinal cor-

ex, lateral orbital frontal cortex, middle temporal gyrus, postcentral

yrus, superior frontal gyrus, and supramarginal gyrus. Top cortical

DG-PET features were bilateral fusiform gyrus, precuneus cortex, ros-

ral middle frontal gyrus, and pars opercularis, as well as left caudal

nterior-cingulate cortex, lingual gyrus, postcentral gyrus, superior tem-

oral gyrus, transverse temporal cortex, and finally right inferior pari-
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Table 4 

Multilevel modeling results for group type stable mild cognitive impairment (sMCI) compared to progressive 

mild cognitive impairment (pMCI). Bold p -values are < 0.05. 

Estimate Std. Error CI (95%) Statistic P-value 

Assessment, Group type 

Intercept 1.611 0.270 [1.083, 2.140] 5.977 < 0.001 

Assessment 0.023 0.039 [ − 0.054, 0.099] 0.582 0.560 

pMCI group 3.052 0.462 [2.145, 3.958] 6.599 < 0.001 

Assessment ∗ pMCI group 0.310 0.060 [0.192, 0.427] 5.150 < 0.001 

Assessment, Group type, Sex 

Intercept 1.005 0.431 [0.161, 1.849] 2.333 0.020 

Assessment 0.054 0.062 [ − 0.067, 0.175] 0.880 0.379 

pMCI group 3.867 0.741 [2.414, 5.320] 5.216 < 0.001 

Males 0.995 0.553 [ − 0.089, 2.079] 1.800 0.072 

Assessment ∗ pMCI group 0.513 0.092 [0.333, 0.694] 5.579 < 0.001 

Assessment ∗ Males − 0.049 0.078 [ − 0.201, 0.104] − 0.629 0.529 

pMCI group ∗ Males − 1.312 0.950 [ − 3.173, 0.549] − 1.382 0.167 

Assessment ∗ pMCI group ∗ Males − 0.351 0.118 [ − 0.583, − 0.120] − 2.982 0.003 

Fig. 5. Individual and group brain age gap (BAG) values at each assessment month following baseline for females (top) and males (bottom). Thick lines represent 

BAG of all subjects for each group across assessments, fitted by loess curve. Shaded area along each curve indicates the 95% confidence interval. Individual dots and 

lines represent individual subjects for each group. Groups are given as stable cognitively normal (sCN), stable mild cognitive impairment (sMCI), and progressive 

mild cognitive impairment (pMCI). Assessment time represents the months following the baseline (initial) assessment. 

8 
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Fig. 6. Individual and group brain age gap (BAG) values at each assessment month following baseline for APOE4 carriers (top) and non-carriers (bottom). Thick lines 

represent BAG of all subjects for each group across assessments, fitted by loess curve. Shaded area along each curve indicates the 95% confidence interval. Individual 

dots and lines represent individual subjects for each group. Groups are given as stable cognitively normal (sCN), and progressive mild cognitive impairment (pMCI). 

Assessment time represents the months following the baseline (initial) assessment. 
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tal cortex, lateral occipital cortex, pericalcarine cortex, superior pari-

tal cortex, supramarginal gyrus, and insula. Top subcortical FDG-PET

eatures included bilateral cerebellum cortex, left thalamus, and right

allidum and accumbens area. Cortical features are visualized in Fig.

1. 

. Discussion 

The present study adds to the growing number of longitudinal BAG

tudies through an investigation into the temporal pattern of the BAG

n the context of AD. We found that the difference between brain age

nd chronological age (i.e., estimated BAG) values were not only con-

istently higher in MCI participants who progressed to AD compared to

N or MCI individuals who did not progress, but they also increased

t a faster rate, given multiple timepoints were considered. Further-

ore, this difference was moderated by sex, where the increase was

arger in female participants. Additionally, the difference in BAG in-

rease between MCI individuals who progressed and sCN was moderated

y APOE ɛ 4 carriership where the increase was larger in APOE ɛ 4 carriers.
9 
inally, investigation of the increasing rate of BAG for the pMCI group

howed a greater slope across assessments following the diagnosis of

D compared to assessments preceding the AD diagnosis, however this

ncreasing rate overall was not significantly moderated by timepoint of

D conversion. While the specific cause for the increasing rate of BAG

hange is unclear, these results demonstrate the utility of the BAG as a

iomarker for understanding group specific temporal patterns related to

D progression. 

.1. Modality choice and model performance 

Compared to past studies using similar older age cohorts to ours (be-

ween 63 and 86 years with a mean of 73 years), the present study

chieved a reasonable prediction performance with a MAE = 3.71,

MSE = 4.79, r = 0.64, and R 

2 = 0.41 (Table S3) ( Anatürk et al.,

021 ; Aycheh et al., 2018 ; Bittner et al., 2021 ; Ly et al., 2020 ; Vidal-

ineiro et al., 2021 ; Wang et al., 2019 ). Sample age range must be con-

idered when contextualizing these results in the broader brain age lit-

rature. For example, a number of brain aging studies boast impres-
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ive correlation coefficient metrics (e.g., r > 0.9), and similarly high

 

2 values, but use wider sample age ranges across entire adulthood

 Bellantuono et al., 2021 ; Cole and Franke, 2017 ; Liem et al., 2017 ).

hen using a sample with an older age range (and similarly greater

ean age), r and R 

2 tend to be smaller (Table S3). It’s possible that the

ider age range represents a more morphologically diverse dataset than

ne with a narrower age range, and with a large enough sample size,

ould afford the model improved performance. To properly compare

odel performances to other studies the current study would need to

e replicated using a larger sample size with an age range spanning the

ntire adult lifespan. Nevertheless, training a superior brain age model

ompared to the current literature was not the goal of this study. 

Importantly, this is one of the few brain aging studies to combine

oth MRI and FDG-PET modalities. The majority of literature uses MRI

lone, with only a handful using FDG-PET alone ( Goyal et al., 2019 ;

ee et al., 2022 ). Our model results ( Fig. 3 ) align with recent findings by

ee et al. (2022) , who showed that a brain age model based on FDG-PET

ata alone performed better than MRI alone. Notably, this past study

id not explore a multimodal model, whereas we found the combina-

ion of both MRI and FDG-PET gave the best performance. This suggests

DG-PET data provides additional information on normal age-related

atterns beyond MRI alone. However, the requirement of having both

RI and FDG-PET data limited our sample size. The performance of our

rain age prediction model is likely to be further improved with more

ubjects. 

A potential caveat is that our MRI features reflect only cortical

hickness. Previous brain age studies used a variety of MRI measures,

ncluding FreeSurfer derived cortical thickness, volume, and surface

rea, or simply raw MRI images ( Bellantuono et al., 2021 ; Cole and

ranke, 2017 ). A few of these studies found better brain age predic-

ion performance when using cortical thickness alone compared to

ther MRI measures ( Liem et al., 2017 ; Wang et al., 2014 ), though

igh performance has also been found using volumetric data alone

 Rokicki et al., 2021 ). As compared to recent studies utilizing elderly

ohorts, our model performance using cortical thickness MRI features

lone was relatively comparable to a study also using only cortical thick-

ess ( Aycheh et al., 2018 ), as well as to studies using multiple measures

 Anatürk et al., 2021 ; Bittner et al., 2021 ; Vidal-Pineiro et al., 2021 ). Fu-

ure research should explore other MRI measures (e.g. volume and sur-

ace area), but a direct comparison of FDG-PET to a single MRI measure

i.e. cortical thickness) still furthers our understanding of brain aging. 

The improved prediction performance following addition of FDG-

ET data into the model supports the current understanding of FDG-PET

s a measure of neurodegeneration distinct from MRI, providing addi-

ional information critical to improved brain age prediction ( Benvenutto

t al., 2018 ; Ou et al., 2019 ), and perhaps more broadly throughout

rain networks ( Stocks et al., 2022 ). While MRI cortical thickness val-

es reflect structural related neurodegeneration, FDG-PET broadly mea-

ures functional information, and particularly neuronal dysfunction sig-

aled by hypometabolism. The relative importance of each FDG-PET

nd MRI feature was explored by comparing the performance of the

riginal model to a model with that feature removed. Since the model

s trained and validated using 75% of the sCN baseline data, relative

mportance calculated this way must be interpreted in the context of

ormal aging, and not aging under disease stages. Thus, calculated im-

ortance values represent the association between improved prediction

erformance and aging in an older, cognitively healthy sample and not

ecessarily the effect of AD-related changes. 

Given this, it is not surprising that the hippocampus, a region typ-

cally associated with AD while also exhibiting minimal metabolic im-

airment during normal aging ( Kalpouzos et al., 2009 ), was not among

he top importance values in the present model. Subregions that make

p the hippocampus, including the dentate gyrus, are less resistant to

ormal aging effects, but are typically combined with other subregions

hen considering the hippocampus as a whole ( Small et al., 2011 ). So,

hile parts of the hippocampus are associated with normal aging, a lack
10 
f variability in thickness or metabolic values may prevent the model

rom identifying the hippocampus as an ‘important’ region for healthy

rain age prediction. Relatedly, another explanation is how the ‘impor-

ance’ of a feature was defined. Our label of ‘top importance’ for a fea-

ure was given when its absence in the model resulted in an MAE at

east 1 standard deviation from the mean. Relative to the last subcorti-

al features that met this arbitrary threshold (the left cerebellum cortex

ith a scaled importance of 0.381), the importance value of the left

ippocampus was 0.231, and 0.246 for the right hippocampus. While

he definition of ‘top importance’ in this study is meant to guide feature

nterpretation, it is not a definitive list. 

However, we did not expect the right entorhinal and left precuneus

o be labeled as highly important MRI features. Cortical thickness re-

uction in both regions have previously been related to increased MCI

isk ( Thambisetty et al., 2010 ). It is possible that while still cognitively

ntact, this older cohort has larger variability in cortical thickness and

etabolic activity for these sensitive regions as compared to a younger

ohort. Given reduced metabolic activity typically precedes gray mat-

er atrophy, FDG-PET features likely capture initial risk information in

his elderly but still symptomatically healthy cohort. Further, as the en-

orhinal cortex is one of the first regions to show signs of AD related

athology ( Braak and Del Tredici, 2015 ), and age is a major risk factor

or AD, this would lend support to the idea of AD as a continuum, rather

han one with discrete disease stages ( Aisen et al., 2017 ). 

In support of this idea, other regions rated as highly important in-

luding the thalamus, middle frontal gyrus, and precuneus have previ-

usly been suggested to exhibit increased glucose uptake as a compen-

atory mechanism for the decline in superior temporal gyrus or frontal

obe regions due to normal (i.e. CN) aging ( Shen et al., 2012 ). Thus, by

easuring metabolism alongside structural measures, we can directly

xplore both changes in functional and structural connectivity, provid-

ng additional information beyond MRI alone which may not capture the

ull picture of underlying disease processes. Interestingly, many FDG-

ET regions rated highly in importance, including superior temporal

yrus and several frontal and parietal lobe regions, were similarly rated

s important MRI regions. Since our multimodal data improves model

erformance, finding similar important regions in both modalities lends

upport to the notion that both FDG-PET and MRI provide complemen-

ary information. While the specificity of FDG-PET findings in the current

odel above and beyond MRI is not entirely clear given these results,

he findings may relate simply to the greater diversity in data provided

n a multimodal model, which affords a higher sensitivity to disease

rocesses. 

.2. Longitudinal analysis of BAG 

Interestingly, the non-linear assessment time effect was not sig-

ificant, though this is likely due to the test considering data from

ll groups. When comparing group effects, the BAG was observed to

ncrease at a significantly faster rate for MCI individual who pro-

ressed compared to the stable individuals. Several cross-sectional stud-

es have observed larger BAG in MCI individuals who progressed to AD

 Franke and Gaser, 2012 ; Liem et al., 2017 ). However, these did not

ccount for individual variances, which were considered in our multi-

evel models. Accounting for individual differences is important given

xpected differences in genetic and environmental effects across aging

 Ziegler et al., 2012 ). 

Within pMCI, we also found that BAG increased at a numerically

reater rate after conversion to AD compared to before conversion, how-

ver this increase was not statistically significant. This is likely due to

he small sample size for pMCI after filtering for individuals with at least

wo assessment points before and after the initial AD diagnosis ( N = 24).

ur findings suggest that, although the progression of AD-related brain

hanges likely precede clinical diagnosis, there may be a change point

or when the BAG begins to accelerate. Identifying this change point
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ould potentially create a more personalized prediction of AD progres-

ion. Future studies with larger longitudinal samples are warranted. 

How the BAG trajectory is moderated by AD progression-related co-

ariates also yielded interesting results. In a healthy control population,

 recent brain aging study found weak but accelerated brain aging in

en compared to women in an older population ( Wrigglesworth et al.,

022 ). When stratifying our sample by disease status (i.e. sCN, sMCI,

MCI) however, we found the opposite in pMCI individuals, where

omen showed an increasing trajectory compared to males. In AD pop-

lations, women are afflicted at a greater rate than men after accounting

or greater life expectancy ( Li and Singh, 2014 ), and may show a greater

ate of decline if afflicted ( Buckley et al., 2019 ; Holland et al., 2013 ).

his may result from neurological consequences of menopause trigger-

ng pathological protein aggregation in women ( Barnes et al., 2005 ;

ua et al., 2010 ; Skup et al., 2011 ), or differential effects of APOE ɛ 4

 Yi et al., 2014 ). Interestingly, another study by Goyal et al. (2019) us-

ng similar machine learning techniques to predict metabolic brain age

ith solely PET measures found a persistently lower metabolic brain age

or female adults compared to male adults, suggesting female brains had

ncreased youthfulness. Though, this is not necessarily in contradiction

ith the current study, since our findings relate to an increased rate of

AG change over time for female participants. 

Similarly, we found rates of BAG increase were greater for pMCI

POE ɛ 4 carriers than for non-carriers, which is in line with a recent

tudy (unrelated to the BAG) which found carriers of APOE ɛ 4 were as-

ociated with faster progression of AD-related dementia ( Chen et al.,

021 ). Taken together with results from the model including sex, these

esults are particularly interesting as volume in the hippocampus, a re-

ion implicated in AD pathology ( Mu and Gage, 2011 ), has previously

een found to be significantly reduced in female APOE ɛ 4 carriers with

CI, compared to female non- APOE ɛ 4 carriers with MCI ( Fleisher et al.,

005 ). Further, APOE ɛ 4 has been shown to improve accuracy for pre-

icting AD conversion ( Löwe et al., 2016 ) and interact with race and

ex. White and black adult APOE ɛ 4 carriers were shown to have over-

apping but differential cognitive resilience factors ( Kaup et al., 2015 ),

 predictor for AD risk (though our sample size limited an investigation

nto race). Amyloid- 𝛽 deposition may also have moderating effects on

he BAG trajectory, given frequent associations between amyloid and AD

 Jack et al., 2013 ). Indeed, a recent study has shown the brain age pre-

iction framework can be used to distinguish between amyloid- 𝛽 neg-

tive or positive status ( Ly et al., 2020 ). The present study did not con-

ider this covariate due to sample size constraints, but importantly, the

entioned study could only significantly distinguish between the two

tatuses when increasing the sample size beyond only ADNI, which in-

roduces potential variability in site effects ( Fortin et al., 2018 ). Clearly,

he moderating effects of covariates such as sex, race, Amyloid- 𝛽, and

POE ɛ 4 (among others) on the BAG trajectory is complex but neces-

ary to evaluate. Future studies using a longitudinal design to study the

AG’s temporal pattern should consider these covariates. 

Taken together, our results are line with the larger literature of

D-related changes in the brain suggesting accelerated aging, such

s gray matter and cortical thickness atrophy ( Anderson et al., 2012 ;

han et al., 2003 ; Driscoll et al., 2009 ). While normal aging is associ-

ted with gray matter atrophy between 0.2–0.5% annually, longitudinal

RI studies have shown annual atrophy rates of 2–3% in AD patients

 Fox and Schott, 2004 ). However, reports of differential cortical thick-

ess changes across regions of the brain ( Storsve et al., 2014 ) suggests

he utility of the BAG as a biomarker of brain changes could be enhanced

hrough improved brain parcellation ( Niu et al., 2022 ). Nevertheless, the

esults of the present study have potential clinical relevance. Previous

tudies have already demonstrated not only an association between a

ositive BAG and increased likelihood of AD, but also a number of other

eurological conditions ( Baecker et al., 2021 ). Our findings expand on

hese studies by considering a longitudinal design and how related co-

ariates may influence the trajectory of the BAG. Longitudinal designs

re critical for early detection of neurodegenerative diseases. 
11 
.3. Limitations & future directions 

The SVR model using MRI and FDG-PET data should be further ex-

lored using a sample with a wider age range. While our use of an elderly

ohort allowed longitudinal comparisons of age-matched groups, future

odels trained using a CN sample with age ranging across the adult

ifespan would allow direct comparisons to the latest high performing

rain age prediction models. Similarly, importance values based on our

odel are not conclusive and would need to be explored in a sample

ith a wider age range. 

Further, the SVR model was trained using only the ADNI dataset and

oes not necessarily generalize to other datasets with different racial or

ocioeconomic distributions, or methodological differences. For exam-

le, the study’s sample is predominantly Caucasian and male. The ad-

antage of a single, homogenous-leaning dataset is that the results can

e directly compared to other studies working with the ADNI, and differ-

nces would be less attributable to dataset or methodology variations.

elated to all PET imaging data (including from ADNI) are partial vol-

me effects due to low resolution, which may cause the activity from

mall ROIs to be underestimated ( Thomas et al., 2011 ). On the other

and, whether correction methods for these effects are reliable or have

 noticeable impact on results are controversial ( Malpas B et al., 2015 ;

amper-González et al., 2018 ; Yang et al., 2017 ). Future brain aging

tudies using FDG-PET may wish to consider these effects. 

Additionally, other choice of brain age prediction methods should

e considered. Our SVR model yielded superior performances to two

ther commonly used methods, including relevance vector regression

RVR) ( Franke et al., 2010 ) and LASSO ( Tishbirani, 1996 ) (Table S2).

lthough optimization in the SVR lead to more accurate representation

f the BAG trajectories, its computational cost was high. RVR has the po-

ential for clinical adoption because of its low computational cost from

ot requiring parameter optimization. Other methods such as deep neu-

al networks have also demonstrated improved brain age prediction ac-

uracies, representing an exciting future direction ( Jonsson et al., 2019 ;

ee et al., 2022 ; Levakov et al., 2020 ; Niu et al., 2020 ). Relatedly, recent

fforts using deep-learning methods ( Hepp et al., 2021 ) or Gaussian pro-

ess regression ( Gutierrez Becker et al., 2018 ) have argued brain aging

ethodology requires a measure of uncertainty given the natural noise

ssociated with CN data and their chronological age. Future studies im-

roving upon the current study should account for this uncertainty in

he brain age model perhaps through Bayesian methods. 

. Conclusion 

Our study contributes to the existing literature by taking a mul-

imodal, longitudinal approach to examine the temporal patterns of

rain aging and found that brain aging occurs at an accelerated rate

or those with pMCI compared to stable individuals. It further suggests

hat there may be a point of acceleration, although this finding needs

eplication in a larger longitudinal sample. These dynamic changes as

ubjects progress from MCI to AD are further moderated by both sex

nd APOE ɛ 4 status. Describing the temporal trajectory for brain aging

s particularly valuable for understanding AD progression and improv-

ng early detection through predictive models. Additionally, BAG pre-

iction performance was improved using both MRI and FDG-PET data,

uggesting complementary neuroimaging measures should be consid-

red in BAG studies. Future studies should expand the generalizability

f the BAG machine learning models through use of diverse samples,

s well as examine the influence of other covariates on the BAG and

xplore individualized change points in pMCI trajectory. 
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